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1 Introduction

Although rocks, at least some of them, are nearly as old as the Earth itself,
their behaviour continues to play an important role in a variety of applications
and phenomena of societal interest. These include natural disasters, such as
landslides, voleanic eruptions and earthquakes. Rocks are widely used for
building materials, foundations, tunnels and underground facilities. Most of
the world’s energy now, and for the foreseeable future, comes from the shallow
crust and an understanding of rock behaviour is essential to efficient and
safe production and storage. Moreover, many of the by-products of energy
production are re-injected to the shallow crust. An increasingly important
application is geological sequestration of carbon dioxide, injection into the
earth to mitigate harmful effects on the climate [42]. Many of these problems
involve not only mechanical behaviour but also its coupling with fluid flow,
heat and chemistry.

The vast majority of tests performed on rocks to determine constitutive
behaviour have been on cylindrical specimens loaded axially symmetrically.
Of these, most have been in axisymmetric compression (largest magnitude
principal siress i3 compressive). There are historical and technical reasons
for the emphasis on this type of test and it does provide information on the
dependence of the behaviour on the mean stress {or confining stress). Such
tests, however, provide very limited information about the response for the
range of deviatoric stress states. Information about the full range of deviatoric
stress states is needed for applications, in which the stress is seldom axially
symmetric, and for numerical simulations.

A particular issue is the role of the intermediate principal stress: In ax-
isymmetric tests it is equal to either the most or least compressive principal
stress. The Mohr-Coulomb condition (e.g., [14], [29]) posits behaviour de-
pending onty on the sum and difference of the largest and smallest principal
stresses and, thus, is independent of the intermediate principal stress. Mogi
([20],[21],]22]) noted, however, that the difference in the behaviour observed
in axially symmetric compression and extension indicated a dependence on
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the intermediate principal stress. In seminal work intended to further explore
the role of the intermediate principal stress, Mogi ([21], [22]) conducted ex-
periments in a true triaxial apparatus in which a cubical specimen could he
subjected to three different principal stresses. Despite their importance, few
true triaxial tests have been conducted on rocks (though there are more on
soils and concrete). Recently, however, Haimson ([9)], (5], [10], [24]) has fab-
ricated a true triaxial apparatus similar in design to that of Mogi and hag
conducted a series of true triaxial tests on several different rock types.

This paper uses the theoretical framework of shear localization as a bifurca-
tion from homogeneous deformation ([33], [30], [3]) to interpret observations
of the inclination of the failure plane in true triaxial tests on Westerly granite.
Although this theory also yields a prediction of the failure stress, assumed
to coincide with shear localization, in terms of a critical value of the slope
of the stress strain curve, the emphasis here is on the orientation of the fajl-
ure plane. One reason is that it is difficult to determine the precise point on
the stress strain curve where localization occurs. Although the zone in which
failure occurs is seldom precisely planar, it is often nearly so in the central
portion of the specimen and, thus, is relatively easy to observe, Depending
on the deviatoric stress state, the stress at localization is predicted to be
from slightly before to well after a peak in the stress strain curve. Although
there is some observational evidence for these predictions, failure tends to
occur closer to peak than predicted for axially symmetric stress states. This
discrepancy is thought to be due to the limitations of smooth vield surface
models to capture adequately the response to abrupt changes in the pattern
of deformation (as must occur for localization in axisymmetric states), but
these limitations do not seem to significantly affect the failure angle.

Because the theory of shear localization is strongly dependent on the type
of constitutive relation used, the paper first discusses the framework for rate-
independent, elastic plastic models and, especially the form for a class that
depends on all three stress invariants. A particular form of yield function
dependent on three invariants is used to infer parameters of the function
from data on Westerly granite and use them to predict the failure angle.

2 Form of Constitutive Relation

The constitutive relation is assumed to have the standard form for a rate-
independent solid. Strain increments are the sum of elastic and inelastic parts

dey; = dej; + del; (1)

.and attention is restricted to smail strain). The elastic portion is related to
she stress increment by

deiy = Cymdon (2)
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where Cjj;iy is the elastic compliance tensor. For isotropy, this is given by

1 1 v
Cisml = el {5(51‘1;53':1 + adjn) — H—V5¢j5kz} (3)

where G is the shear modulus, v is Poisson’s ratio and d;; = 1, if i = j, but
8;; = 0, if ¢ # j. The inelastic strain increments have the form
1
deiy = 7 FijQudoi (4)

where H is a hardening modulus, F;; gives the direction of the inelastic strain
increment (in stress space), and Qg is the direction of the normal to the yield
surface. If the dependence of the yield surface on stress is given by

F(O'z'j) =0 (5)

where other parameters that keep track of the current state of inelastic de-
formation are suppressed, then

Q,‘,j = 3F/80‘ij (6)
If a plastic potential exists and is of the form
Gloi) =0 (1)
then
Py; = 0G /00y (8)

If F; = 4y, then the inelastic strain increment is nor.ma.l juo the yield su.lrfa,ce
in stress space and the flow rule (or plastic potential) is said to be ass.ocrfxted.
For rocks (and soils and other geomaterials), observations generally indicate
that the traces of Fy; and &, are not equal, i.e., P # Q{ck, and these
macroscopic observations are supported by the nature of the mlcros.struct'ural
mechanisms of inelasticity, such as frictional sliding and local tensile micro-
cracking due to grain scale inhomogeneities. There appears, however, to be
no evidence for deviations from normality in the deviatoric plane (IT - plane
or planes in which oy is constant). Because there is also no reason to expect
such deviations on the basis of microstructural mechanisms, we assurne here

that P/, = Qi;, where the prime denotes the deviatoric part of the tensor.

3 Predictions for Two Invariant Model

If the yield function {5) and plastic potential (7) depend on only the first two
invariants of the stress, taken to be o = oy and

7= (swsn/2)"? (9)

where 8;; = 0i; — (0xk/3)0; is the deviatoric part of the stress, they can be
written as



202 J.W. Rudnicki
T = f(o) (10)
and
7= glo) (11)
Then Qy; (6)and P; (8) are given by
N SN
Qi = 2 + < (12)
and
L
Py = 5>+ 388 (13)
where = —3f'(0) is a friction coefficient and 8 = —3¢'(0) is a dilatancy
factor. For this case P, = Q}; = s4;/27.

Extending seminal work by Hadamard [8], Thomas [39], Mandl [18] and
Hill [12], Rudnicki and Rice [33] analyzed localization as a bifurcation from
homogeneous deformation for the case of a constitutive relation having the
form of (4) with (12} and (13). They show the prediction for the angle between
nermal to the band of localization and the least (most compressive) principal
stress is ([33], eqn. (19))

tan? Brr = %_/FSS/T? (14)
where 1
€= 5L+ 0)(B+m) — (s2/7)(1— v) (15)

and 81 > 82 > s3 are the largest, intermediate and smallest principal values
of s;; (Rudnicki and Rice [33] use Nmax, N and Ny, for s; /7, s2/7 and
83/7). Rudnicki and Olsson ([32], eqns. (10) and (11)) rewrite this result in
the form
0o — T 1 .
RR = 7 + 5 aresina {16)
where

o= BB+ p) = (s2/r)(1 = ) ol

4 —3(s2/7)2

For a < -1, the plane of localization is perpendicular to the most compressive
stress (gr = 0) and said to be a compaction band. For & > 1, the plane of
localization is perpendicular to the least compressive stress (§grr = 7/2) and
said to be a dilation band. Observations of compaction bands in porous sand-
stones in the field ([36], [34]) and in the laboratory ([25], (1], [16], [38], [41],
[40], [6], [26], [7]) hawve been reported recently. Understanding the conditions
for their formation and evolution is of interest because they dramatically
reduce the permeability for flow across them ([41], [13], [37], [35]). Conse-
quently, their formation in porous subsurface reservoirs could significantly
affect applications involving fluid injection or withdrawal. Du Bernard et al.
2] have reported an observation of dilation bands in the field, but they appear
to be much less common.
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4 Three Invariant Results

Rice [30] has given a more general localization analysis of the constitutive
relation (4} without specific reference to the forms of F;; and Q;; and Ottosen
and Runesson [28] have extended the analysis for a yield function and plastic
potential that depend on all three stress invariants. The results for a three
invariant model can, however, be obtained by appropriate replacements in
the results of [33].

Mohr-Coulomb

Fig. 1 The figure compares the shape (33) in a the deviatoric plane (ox; = constant)
with the Mohr-Coulomb hexagon. Also shown is the angle & defined by (18). The
axes of the principal deviatoric stresses differ by angles of 120° in this plane.

Two of the invariants are taken to be the trace of the stress ¢ = oy, and
the second invariant of the deviatoric stress {or Mises equivalent stress) (9).
It is convenient to take the third invariant as the Lode angle [11]

1 . 27 J3
6= —3 arcsin (1 / I;) (18)

where J; = det(s;;) is the third invariant of the deviatoric stress. Geo-
metrically, the angle (18) defines a 60° sector in planes o4 =constant,
—7n/6 < 8 < 7w/6 (Figure 1). The limiting values correspond to axisym-
metric extension {# = —x/6; o1 > 03 = 03) and axisymmetric compression
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(¢ = 7/6; o1 = 02 > &3). Deviatoric pure shear (o3 = (61 +o3) /2) corre-
sponds to 6 = 0. Because this angle (18) is related to sp/7 in (17) by
s$2/T = 2sin0/V3 (19)

the result (17) does depend on the third invariant of stress although the yield
fur%ctlon and plastic potential on which it is based do not. With this choice
of invariants, the yield function and plastic potential have the forms

F{r,0,8) =0 (20}
and
G(r,0,8) =0 (21)
The normal to the yield surface (6) is
. _ oG or do a6
ng B Ba,-j - GT 80’1;:‘,' + Ga 80’z‘j + Ga 30','3' (22)

where the subscript denotes the partial derviative of ¢ with respect to that
argument. The derivatives of the first two invariants with respect to stress
are easily calculated as 87/00y; = s;;/7 and 90 /80y; = &;; and the third is
given by

aJ3

30'-,;;,'
The tensor #;; is deviatoric (fx = 0) and has the same principal axes as s;;.
The result (23) can be used to shown that

80 1{\/5

= ti; = SikSk; — (2/3)057° (23)

(90',;_:,' a T

_ V3 by 8ij
2 cos(36) T2 + tan(36) 27 } (24)

and (22) can be rewritten as

ij 1] VB 4y 5ij
Qij = Folyy + F, 20 2 Vo i S
J K 27 7 | 2cos(36) 72 + tan(36) 9r (25)

Whe.re the last two terms give the deviatoric part. The direction of the inelastic
strain increment is given by the same expression with I replaced by G. The
assumption that the deviatoric parts of P;; and Qi; be equal, Q). = P,
requires that ! ’

Fr=G., Fp=0py (26)
Consequently, the yield function and plastic potential can differ only by a
function of o. Calculating 2Q;,Q;; vields

204,Qi; = F2 + (Fo/7)’ (27)
using the intermediate results
tiji‘ij = 27‘4/3

and
t@jb’ij = —2’7‘3 sin(38)/\/§
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5 Expression for the Band Angle

For the three invariant constitutive model and P/, = @;, the band an-
gle is given by the same expressions, (14), (15), (16) and (17), with the
replacements:

Thus, the expression for o becomes

_ (1/3)(1 + ) (P + Qr) — Q5(1 — 2v)
: V20T = 3@ (28)

Using (19), {23), (25) and (27) yields the following more compact result:

V31 +v)cos p(Fr + Gy) — (1 — 2v)sin(¢p + #) Fr (29)
B V3E;, cos(¢ + )
where ¢, defined by
tan ¢ = F;,—/T (30)

is the angle between the normal to the yield surface in the deviatoric plane
and a radial vectar.

5.1 Mohr-Coulomnb Result

A number of three invariant yield surfaces have been suggested for soils, rock
and concrete (see, e.g., [27], [15], [4]). Of this class, the most familiar, at
least in geomechanics, is the Mohr-Coulomb form. Although this condition
is usually applied as a failure criterion ([14], [29]), it has also been used for
yield (e.g., [23]}). The Mohr-Columb condition has the form

Fye=q+M(p)=0 {31)

where ¢ = (o1 — o3) /2 and p = (o1 + g3) /2. Thus, it does not depend at
all on the intermediate principal stress o3. Although (31) can be expressed
in terms of @, 7, and &, it is more convenient to follow [28] and identify the
principal values of @; directly. The denominator of (28) is unity and (28)
reduces to
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= (1+v)(Po+M)/3+(1—20)M'/3 (32)
where M’ denotes the derivative with respect to its argument. Assuming
normality, Py = Qrr = M’ reduces (32) to & = M. Thus, as noted by
(28], (32) reduces to the usual Mohr-Coulumb prediction for a friction angle
defined by arcsin{M’). Although this result can be used to interpret dats
from axisymmetric compression, the absence of any dependence on o5 is at
odds with observations in true triaxial tests ([21], [22], [9], [5], [10], [24]).

6 A Class of Three Invariant Yield Surfaces

A class of three invariant yield surfaces is defined by

F(r,0,6) = —\/gAsin(Bf}) (%)3 n (%)2 —1=0 (33)

where 0 < A < 1, and both A and 7y may depend on ¢. For A = ( and
7o = 7o(0), (33) reduces to the form considered by [33] (10). For 4 = 1,
the shape of the yield surface in the deviatoric plane is triangular, as for
Rankine material in which yield occurs at a particular value of the largest
(least compressive) principal stress. For § = 0, the first term in (33) vanishes
and the condition again reduces to 7 = 79(c). Thus, 79(o) is determined by
the mean stress dependence in deviatoric pure shear.

The form (33) has the same shape in the deviatoric plane as the Lade-
Duncan ([17], [4]) and Matsucka-Nakai ([19], [4]) criteria but the mean stress
dependence is not specific and can be adjusted by the forms of A and 7. In

particular, taking
_ o (kLD — 27)
™= T R (34)

and A = /1 — 27/kpp gives the form of the Lade-Duncan criterion in which

krp > 27. Taking
_ [2) kMN -9
=T8N T - 3 (39)

and A = /3k3, n(kanw — 9)/(knew — 3)3 gives the form of the Matsuoka-
Nakai criterion in which kasv > 9. Because these two criteria and (33) have
the identical shape in the deviatoric plane if normalized to agree in pure
shear (¢ = 0), the demonstration of convexity by [15] for Lade-Duncan and
Matsuoka-Nakai also applies to (33). An advantage of the form (33) is that
the dependence of 7y and A on ¢ can be chosen to agree with particular data
sets. Figure 1 compares the shape of Mohr Coulomb criterion in the deviatoric
plane with the shape of (33) for A = 0,0.7 and 0.9 with all normalized to
agree in pure shear. The curve for A = (} is identical with the Mises circle in
thig plane. For each criterion (except with 4 = 0) the yield stresses differ in
axisymmetric compression (# = 30°) and axisymmetric extension (# = —30°)
and the amount of the difference varies for each criterion.

Failure of Rocks in the Laboratory and in the Earth 207
7 Westerly Granite Data

In this section, (33) is used with (29) to model band angle data on Westerly
granite. These data combine results of Mogi [20] for axially symmetric exten-
sion and compression with more recent true triaxial data of [10]. Rudnicki
[31] has examined this data set using (16) and (17) but allowing the sum of
t + 8 to depend on the mean stress in a manner inferred from the results
of axisymmetric compression. Although this analysis roughly captures some
trends in the data, the quantitative agreement is not very good. As will be
shown here, the use of the three invariant model (33) yields better agreement
between data and predictions.

®  MogiAG
500 - +  MogiAE
o HCAC
a0  compression
=427 +1.22 (—o/3)
©
a8
= 3004
=
200
extension
1=19.2+0.79 (—o/3)
100
3 T T T T T T
100 200 300 400
-s/3 (MPa)

Fig. 2 A plot of 7 (at failure) vs. mean normal stress —o /3 for the axisymmetric
compression and extension tests of [20] and the true triaxial tests of [10] loaded in
axially symmetric compression. Also shown are lines fit to the results in compression
and extension.

As mentioned earlier, data on the evolution of the yield surface is seldom
available for rocks. The data used here are for "failure” which corresponds
roughly to the development of a through going fault approximately at a peak
in the stress vs. strain curve. As also noted earlier, the bifurcation analy-
sis predicts that localization can occur slightly before peak, for deformation
states near plane strain, or well after peak, for axisymmetric deformation
states. Although there is some evidence consistent with these predictions [3],
localization is typically observed to occur near peak stress. Whether it is
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observed slightly before or after depends not only on the deformation state
but on a variety of experimental factors such as effective stiffness of the load-
ing machine, nominal deformation rate, precise alignment of the platens and
degree of constraint imposed by the end conditions. In the absence of de-
tailed information on yield, I assume the failure data approximately reflect
variation of the yield surface. Figure 2 plots 7 (at failure) vs. mean compres-
sive stress, —o /3, for the axisymmetric extension and compression tests of
Mogi [20] on Westerly granite. Also shown are results of Haimson and Chang
[10] in a true triaxial apparatus for axisymmetric compression stress states
(o1 = 02 > 03). Agreement of the tests of [20] and [10] illustrates the con-
sistency of results obtained using the different apparati. The results for both
tests are well-modelled by the straight lines given on the graph. The differ.
ent lines for compression and extension indicate a dependence on the Lode
angle # [31]. For axisymmetric compression, 7 is given by tac7o(0), where
tac is the root of (33) for § = = /6. Similarly, for axisymmetric extension,
7 = tapTo(o), where t4x is the root of (33) for # = —/6. The linear varia-
tions suggest that it suffices to take A as constant (not dependent on mean
stress) and (o) as linear:

TO(O') = Tpo +’T01(*0'/3) (36)
600 b
axisymmetric compression e
500 -
<
400 - ®  MogiAC
¢ MogiAE
& 3004
s
=]
200 -
. deviatoric pure shear
o axisymmetric extension
0
f ! T T 1 v I M I M 1
0 100 200 300 400 500
—o/3 (MPa)

Fig. 3 Plot of 7 vs. —a/3 for axisymmetric compression and extension data of [20]
and all the true triaxial data of [10]. Lines are predictions of (33) for A = 0.88 and
¢ =7/6, 0, and —x/6.
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Fig. 4 Measured band angles for axisymmetric compression and extension versus
the mean normal stress and straightline fits to the data
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Fig. 5 Variations of dry/do and 780G /80 inferred from (29) applied to the linear
variation of band angles in compression and extension (Figurs 4). Vertical axis gives
numerical values for both dro/de and 708G/ Be.
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where 7o and 7; are the intercept and slope of the fit to the axisymmetric
compression data in Figure 2 divided by t 4. The value of A = 0.88 is chosen
s0 that the ratio of 4/t ag is equal to the ratio of slopes in Figure 2.
Figure 3 plots the data of [20] shown in Figure 2 along with all the true
triaxial data of [10]. The true triaxial tests were conducted by loading the
specimens in hydrostatic compression to the level of ¢y, then loading biaxi-
ally with o2 = o3 to a fixed value of ¢y, and finally increasing o3 to failure,
Different symbols correspond to tests at different values of the least compres-
sive stress (o1). From a conceptual point-of-view, it would be preferable to
conduct tests at constant values of & or 8, but both vary during these tests,
The lines in Figure 3 show the resulting predictions for axisymmetric com-
pression, axisymmetric extension and deviatoric pure shear from (33) with
A = 0.88 and (36). Although 7o(0) (36) is fixed by the data for axisym-
metric compression and A is chosen to give the observed ratio of slopes in
compression and extension, the intercept for extension is only slightly larger
than that given by the fit to the data; i.e., axisymmetric extension points lie
slightly below the line in Figure 2. Furthermore, the values of 8 for the true

o 0MPa
a0 - e 2MPa
A 20 MPa
v 38 MPa
<& 60 MPa
< 77 MPa
804 O
4 ob o > 100 MPa
| o
<& u o
@ A ® mom s
g 70 +* ° j © . - ol '
g v n = v AD n A. | ]
% ™ < V. g u o =u g
oM u ]
n u x @
60 > P> | 4]
> o
S0 ’ ! T T T T T T
10 15 20 25 30
Lode Angle, ¢

Fig. 6 Comparison of predicted (solid squares) and observed band angles (open
symbols) as a function of the Lode angle 6. Different open symbols correspond to
the value (shown in legend) of the fixed minimum compressive stress in the test.
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triaxial tests lie between 0.0 and 30° which is consistent with the position of
the line for deviatoric pure shear. (See Figure 3 of [31] which shows data for
the band angle plotted against 2sin §).

Figure 4 shows the measured band angles for axisymmetric compression
and extension versus the mean normal stress and straightline fits to the data.
The derivatives F; and Fjp that enter (29) and (30) can easily be calculated
from (33). If A is a constant and ounly 7 depends on o, then

FaleO% [(:_0)23] (37)

where the ratio 7/7; depends on @ for a given value of A. G,in {29) is unknown
but can be determined along with dry/do from the observed variations of the
band angles in axisymmetric compression and extension. In other words, us-
ing the linear fits to the band angle data shown in Figure 4 in the expressions
(16) with {29} and (30) evaluated for compression and extension yields two
linear equations to determine G, and dmp/do. The results are shown in Figure
5. The inferred dependence of dry /de with ¢ is not consistent with the linear
variation of 7g(¢) shown in Figure 2. Nevertheless, the variation of dry/do is
small {(0.72 to 0.87) and only slightly below the value used to plot the lines in
Figure 2 (0.898). This discrepancy may be due to the issues discussed earlier
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Fig. 7 Same as Figure 6 but plotted against the mean normal compressive stress
—a/3
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about using failure data to approximate the variation of the vield surface,
The data for stress at failure are, however, only used to estimate the valye
of A. Alternatively, the value of A could be chosen to improve the agreement
between the predictions and observations of the band angle data.

Figure 6 compares the values of the predicted and observed band angles
as a function of the Lode angle #. The agreement is good and the correlation
between the two data sets is 0.912. Figure 7 shows the comparison ag g
ffunction of mean stress. Note that the predictions capture the roughly linear
increase in band angle with increasing intermediate principal stress and the
generally downward trend with increasing mean compressive stress.

8 Conclusion

Data from true triaxial tests provide an opportunity to investigate the form
of three-dimensional constitutive relations for rocks. Tests at multiple mean
stresses for axisymmetric compression and extension can be used to infer the
behaviour for other deviatoric stress states and mean stresses. Use of the
predictions for the band angle from bifurcation theory with a simple form of
the yield function that depends on all three stress invariants vields results
that are an improvement over those based on the two invariant model. The
predictions are in reasonable agreement with the observations on Westerly
granite and it will be interesting to see if similarly good agreement can be
achieved with other rock types.
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